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Abstract

Purpose – This paper’s aim is to investigate the effect of surface radiation on the developing laminar forced
convection flow of a transparent gas between two vertical parallel plates. The walls are heated asymmetrically,
this enhances the effect of radiation even with the two walls having low values of emissivity.

Design/methodology/approach – Numerical techniques were used to study the effect of the
controlling parameters on wall temperatures, fluid temperature profiles, and Nusslet number.

Findings – The values of the radiation number at which surface radiation can engender symmetric
heating (and hence maximum average Nusslet number on the heated wall and maximum reduction in
the maximum heated wall temperature are achieved) are obtained. Threshold values of the radiation
number at which radiation effects can be neglected are obtained.

Research limitations/implications – Boundary-layer flow model is used.

Practical implications – The implications include design of high-temperature gas-cooled heat
exchangers, advanced energy conversion devices, advanced types of power plants, and many others.

Originality/value – Though a number of analyses of internal flows including radiation effect have been
made, most have been directed at the simplest case of the prescribed uniform (isothermal) temperature
boundary condition. The available literature that deals with the problem with prescribed heat flux at the
walls is limited to fully developed flow or specifying the convection coefficient a priori. The lack of both
theoretical and experimental data concerning combined forced convection and surface radiation
developing flows between two parallel and its practical importance motivated the present work.
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Nomenclature

A aspect ratio, ‘=b

b plate spacing, m

B radiosity of the surface, W/m2

h local heat-transfer coefficient based on
area of heated surface ð�kf@T=@yjwÞ=

�
ðTw � TmÞ�, W/m2 �K

�hh average heat-transfer coefficient over
the channel height based on average
temperature of heated wall
ðQ=‘ðTwm�T1ÞÞ¼ðq=Twm�T1½ Þ�;

W/m2 �K
H irradiation, W/m2

Kf thermal conductivity of fluid,
W/m2 � K

‘ plate length, m

L dimensionless plate length,¼A/Re

m number of vertical increments

n number of horizontal increments

Nrad radiation number, sq3
1b4=k4

f

Nu1 local Nusselt number based on
area of surface 1 ðh1b=kfÞ ¼½
ð@u=@Yjw1

Þ=ðuw1
� umÞ�

Nu2 local Nusselt number based on
area of surface 2 ðh2b=kfÞ ¼½
ð@u=@Yjw2

Þ=ðuw2
� umÞ�

�NNu1 average Nusselt number on wall
1 ð�hh1b=kfÞ ¼ ðPr
�

Re=AÞ�
ðum � u1Þ=ðuwm1

� u1Þ½ ��
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�NNu2 average Nusselt number on wall
2 ð�hh2 b=kfÞ ¼ ðPr Re=AÞ � ðum½
�

�u1Þ= ðuwm2
� u1Þ��

p pressure of fluid at any cross
section, N=m2

p0 pressure defect at any cross
section ½¼ pþ r0gz�;N=m2

p0 pressure of fluid at channel
entrance, N=m2

P dimensionless pressure at any
cross section, ðp0 � p0Þ=ðr0u2

0Þ
q00j heat flux at surface 1 or 2, W=m2

Q dimensionless heat flux at surface,
q00j =q001 [Q ¼ 1 at surface 1 and rH

at surface 2]

Qa rate of heat absorbed by fluid from
entrance up to the channel exit,
¼ ½r0 Cp fðTm � T1Þ�, W

rH heat flux ratio, q2=q1

Re Reynolds number,¼ ðuobÞ=y
T temperature at any point, K

Tm mixing-cup temperature over
any cross section

¼
ðb

0

uT dy

!
=

ðb

0

u dy

 #
;K

"

Twm average temperature of heated

wall ¼ 1=‘

ð‘
0

Tw dZ

� �
;K

T1 ambient temperature, K

t thickness of the wall, m

uo entrance axial velocity, m/s

u longitudinal velocity component
at any point, m/s

U dimensionless longitudinal
velocity, U ¼ u/uo

v transverse velocity component at
any point, m/s

V dimensionless transverse velocity,
V ¼ bv/y

y horizontal coordinate, m

Y dimensionless horizontal
coordinate, y/b

z vertical coordinate, m

Z dimensionless vertical coordinate,
z/(b Re)

Greek symbols

� kinematic fluid viscosity

� fluid density, kg=m3

� dynamic fluid viscosity, kg=m � s
� thermal diffusivity, m2=s

� coefficient of thermal expansion,
�1=r @r=@Tð ÞP;K

�1

u dimensionless temperature at any
point ¼ kfT=q1b½ �

uf dimensionless temperature at any
point ¼ ðT� TmÞ=ðTw1

� TmÞ½ �
um dimensionless mixing-cup

temperature over any cross section

¼kfTm=q1b¼
ð1

0

UudY=

ð1

0

U

�
dY�

uwm dimensionless average
temperature of heated wall

¼ kfTwm=q1b ¼ 1=L

ðL

0

uw dZ

� �
" wall emissivity

� Stefan Boltzman
constant ¼ 5.67*10�8 W/m2 k4

Subscripts

e exit

f fluid

i inlet

w wall

1 surface one corresponding to q1

o ambient or inlet

2 surface two corresponding to q2

Superscript
0 differential element on the

opposing wall
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Introduction
The interaction of forced convection and surface radiation at high temperatures and
high heat fluxes is important in many technological applications which require high
performance and efficiency. These applications include the design of high-temperature
gas-cooled nuclear reactors, advanced energy conversion devices, advanced types of
power plants, and many others. Though a number of analyses of internal flows
including radiation effect have been made, most have been directed at the simplest case
of the prescribed uniform (isothermal) temperature boundary condition, which is
sometimes inconsistent with reality. The available literature that deals with the
problem with prescribed heat flux at the walls is limited to fully developed flow or
specifying the convection coefficient a priori. However, these studies showed that the
surface radiation can significantly alter the non-radiation results.

Keshock and Siegel (1964) investigated the interaction of surface radiation and
convection for a parallel plate channel of finite length with one wall heated and the
other adiabatic. Liu and Thorsen (1970) presented a general formulation for
determining the gas and wall temperature distribution for both laminar and turbulent
flows in parallel plate channels of finite length. They assumed that the velocity profile
is known and it was found that for selected values of parameters the local heat-transfer
coefficient can actually become negative as the channel exit is approached. Perlmutter
and Siegel (1962), Siegel and Perlmutter (1962), and Marcelo (1985) studied the
combined forced convection and surface radiation in a tube. The mean fluid velocity
and the convective heat-transfer coefficient were assumed constant. Chen (1966), Sikka
and Iqbal (1970), Ghoshdastider and Bandyopadhyay (1988), and Razzaque et al. (1982)
investigated the heat transfer of the hydrodynamically fully developed laminar flow in
a circular tube under the radiant heat flux boundary conditions. Gururaja et al. (2002)
presented a numerical analysis of the problem of two-dimensional, steady,
incompressible, conjugate, laminar, mixed convection with surface radiation in a
vertical parallel-plate channel, provided with a flush-mounted, heat generating,
discrete heat source in each wall. Correlations were evolved for the maximum
temperature of the channel walls and the mean friction coefficient. However, his
investigation is limited to one discrete heat source in each wall with heat source height
equal to 12.5 percent of the total height of the channel. Cadafaleh et al. (2003) obtained
numerically a correlation for free convection heat transfer in large air channels
bounded by one isothermal plate and one adiabatic plate. Surface radiation between
plates and different inclination angles are considered. Krishnan et al. (2004a, b)
presented the results of an experimental and semi-experimental investigation of steady
laminar natural convection and surface radiation between three parallel vertical plates,
namely, a central hot plate coated with blackboard paint and two unheated side plates
that were polished, symmetrically spaced on each side, with air as the inventing
medium. The analysis brought out the significance of radiation heat-transfer rate even
at low temperature of 310 K. The same authors (Krishnan et al., 2004a, b) gave, based
on the measurements, a correlation for the maximum temperature excess of the hot
plate in terms of the emissivity of the central and the side plates, the aspect ratio, and
the dimensionless total heat flux.

A careful review of the literature failed to disclose any prior work on the effect of
surface radiation on the hydro-dynamically and thermally developing flow with non-
isothermal boundary conditions between two parallel plates. The lack of both
theoretical and experimental data concerning this problem and its practical importance
motivated the present work. The present study focuses on the interaction of surface
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radiation with forced convection for laminar flow of a transparent gas between two
parallel plates.

Convection field equations
Assume steady, laminar, boundary-layer flow of a Newtonian fluid between two
vertical parallel plates of constant cross-sectional area as shown in Figure 1. Neglecting
viscous dissipation, mass diffusion, chemical reaction, change of phase and
electromagnetic effects, the dimensionless equations which govern the laminar forced
flow and the heat transfer in the entry-region of vertical parallel plates are:

@V

@Y
þ @U

@Z
¼ 0 ð1Þ

V
@U

@Y
þ U

@U

@Z
¼ dP

dZ
þ @

2U

@Y2
ð2Þ

V
@u

@Y
þ U

@u

@Z
¼ 1

Pr

@2u

@Y2
ð3Þ

The integral form of the continuity Equation (1) is:

F ¼
ð1

0

U dY ¼ 1 ð4Þ

Figure 1.
Schematic of the problem

geometry
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The dimensionless parameters appearing in Equations (1) to (4) are defined as:

Y ¼ y

b
Z ¼ z

bRe
V ¼ bv

y
U ¼ u

�uu
P ¼ P 0 � PO

rO�uu2
u ¼ kT

q1b

Re ¼
�uDuD

y

Boundary conditions
The boundary conditions for the above convection field equations can be written in
dimensionless forms as follows:

For Z ¼ 0 and 0 < Y < 1 : U ¼ 1; V ¼ P ¼ 0; and u ¼ u1 ð5Þ
For Z > 0 and Y ¼ 0 : U ¼ V ¼ 0; and Q ¼ 1 ð6Þ
For Z > 0 and Y ¼ 1 : U ¼ V ¼ 0; and Q ¼ rH ð7Þ

Radiation constraint equations
The equation for temperature distribution along each of the two channel walls is derived
based on an energy balance. Taking an energy balance on a differential control element
at z (see Figure 2), the first law of thermodynamics per unit area of the surface leads to:

kwjt
d2TðzÞ

dz2

�����
j

þ qjðzÞ þ HjðzÞ ¼ BjðzÞ � kf
@T

@y

����
j

; j ¼ 1; 2 ð8Þ

Where j ¼ 1 represents the LHS plate, j ¼ 2 represents the RHS plate, H(z) and B(z)
represent the local irradiation and radiosity of the surfaces at position z and the (þ) and
(�) signs are for j ¼ 1 and j ¼ 2, respectively.

However, it was shown by Liu and Thorsen (1970) that the wall conduction term in
the above constraint equations does not ‘‘qualitatively’’ influence the interaction
between the convection and surface radiation processes. For practical wall thicknesses
and wall thermal conductivities, the axial wall conduction has only a small effect on the

Figure 2.
Control volume for an
energy flow
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quantitative value of the wall temperature distribution. This result has also been
confirmed by results of the present study. Therefore, for the sake of brevity, the effect of
axial wall conduction will be neglected. Moreover, in the present study, the inlet and
exit channel areas are assumed to be black at the ambient temperature ðT1Þ and exit
bulk temperature ðTeÞ, respectively. All the surfaces are assumed to be gray, opaque,
and diffuse. The shape factors needed to find the irradiation at each element are
obtained using the relations given in Keshock and Siegel (1964).

Thus, the above equation, after neglecting axial wall conduction, the substitution of
all the relevant expressions, simplification, and non-dimensionalization, leads to the
following radiation constraint equations:

Surface 1

1þ Nradu
4
1

1

2
� ZRe

2

� �
ð1þ Z2Re2Þ�1=2

� �

þ Nradu
4
e

1

2
� ðL� ZÞRe

2

� �
ð1þ ðL� ZÞ2 Re2Þ�1=2

� �

þ
ðL

0

1� 22

22

@u

@Y

����
Y¼1

�rH

� �
þ Nradu

4
w2ðZÞ

� 	

� 1

2
½1þ Re2ðZ� Z0Þ2�ð�3=2ÞRe dZ0 ¼ 1� 21

21
� @u
@Y

����
Y¼0

�1

� �

þ Nrad u4
w1
ðZÞ � @u

@Y

����
Y¼0

ð9Þ

Where: Nrad ¼ �q3
1b4=k4 and rH ¼ q2=q1:

Surface 2

rH þ Nradu
4
1

1

2
� ZRe

2

� �
ð1þ Z2Re2Þ�1=2

� �

þ Nradu
4
e

1

2
� ðL� ZÞ

2
Re

� �
ð1þ ðL� ZÞ2 Re2Þ�1=2

� �

þ
ðL

0

1� 21

21
� @u
@Y

����
Y¼0

�1

� �
þ Nradu

4
w1ðZÞ

� 	

� 1

2
½1þ Re2ðZ� Z0Þ2��3=2 Re dZ0 ¼ 1� 22

22

@u

@Y

����
Y¼1

�rH

� �

þ Nradu
4
w2
ðZÞ þ @u

@Y

����
Y¼1

ð10Þ

Method of solution
The combined radiation-convection problem is solved based on the following
technique. After selecting values of A, Pr, u1, Nrad, 11 and 12, the pure convection field
Equations (1) through (3) under the constraint of the integral continuity Equation (4)



HFF
20,2

224

and subject to the boundary conditions (5)-(7) are solved using a finite-difference
numerical marching technique, the details of which can be found in Coney and El-
Shaarawi (1975). On the other hand, the radiation constraint Equations (9) through (10)
are solved iteratively using a Gauss-Seidel scheme.

Thus, the solution is broken down into two sub problems. The first involves treating
the convection field equations (continuity, momentum, and energy) as an initial value
problem and a numerical marching technique is used to obtain a solution. The second
involves the solution of Equations (9) and (10) iteratively to update the wall
temperatures. These updated wall temperatures will again be used to resolve the
convection energy equation. Then, the process is repeated until convergence is
achieved. The first iteration assumes no radiation; the radiation constraint equations
are replaced by a uniform wall heat flux (UHF), which is equivalent to specifying the
temperature gradient. Then, the obtained wall temperatures and temperature gradient
are used in the integrals of the radiation constraint Equations (9) and (10) and these two
equations are iteratively solved by means of Gauss-Seidel technique.

The results obtained through the solution of Equations (9) and (10) are then used to
resolve Equations (1) through (4). The procedure is repeated until the difference
between old and new values of temperatures is less than a prescribed tolerance (10�6

percent in the present investigation).

Grid independence test
It is well known that the numerical inaccuracy, in any numerical scheme, that results
from the truncation errors can be reduced via mesh refinement. As the number of the
grid points increases, the accuracy of the solution increases until reach a stage that
the accuracy is independent of the grid size. The effect of grid size, i.e. the number of
the grid points (m*n), on the present problem is studied as shown in Table I. The grid
independence is tested in two stages: (1) m is fixed and n is varied and (2) n is fixed and
m is varied. The results of the first stage (with m fixed) indicate that the difference in
Nu1 between the grid size 1,000*60 and 1,000*100 is 0.0456. The results of the second
stage (with n fixed) show that the difference in Nu1 between the grid size 1,000*60 and
2,000*60 is 0.1209. Accordingly, m and n have been fixed as 1,000*60, respectively.

Validation of the method
There is no available published work considering the combined radiation and forced
convection in the developing region. Therefore, the present numerical code is validated
in the combined radiation-convection regime with the fully-developed forced
convection work of Liu and Thorsen (1970). On the other hand, there are hydro-
dynamically developing forced-convection results without surface radiation (by Heaton

Table I.
Effect of grid size on the
forced convection
problem in parallel
plate channels

Stage number m and n Grid size m * n Nu1 Percentage difference

(1) m ¼ 1,000 n varied 1,000 * 20 5.0321 –
1,000 * 60 5.0458 0.2723
1,000 * 100 5.0481 0.0456

(2) n ¼ 60 m varied 5,00 * 60 5.0338 –
1,000 * 60 5.0458 0.2384
2,000 * 60 5.0519 0.1209

Notes: Re ¼ 500, A ¼ 100, u1 ¼ 1, Nrad ¼ 10, 1 ¼ 0.5 and rH ¼ 0
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et al. (1964)). These results are used to validate the present numerical code in the hydro-
dynamically developing regime at considerably low values of surface emissivities.

Figure 3 shows a comparison between the present results for the temperature on the
walls in the fully-developed case and those of Liu and Thorsen (1970) with Re ¼ 1,060,
Pr ¼ 0.707, A ¼ 20, Nrad ¼ 7.3*104, 1 ¼ 0.1, and u1 ¼ 0.014. The obtained results
show excellent agreement with the work of Liu and Thorsen (1970). On the other hand,
the code is also validated by a special computer run to find the local Nusselt number
for very low value of emissivity, 11 ¼ 12 ¼ 1 ¼ 10�6. Table II shows a comparison
between the pertinent obtained results and the corresponding pure forced-convection
results of Heaton et al. (1964). This comparison shows a good agreement with the
results of Heaton et al. (1964).

Results and discussion
Comparing the pure forced-convection case (Heaton et al. (1964)) with the present
combined radiation-forced convection, the coupling between surface radiative and
forced convective heat transfer introduces six additional dimensionless parameters.
These parameters are: the two surface emissivities ð11; 12Þ, the radiation number
(Nrad ¼ sq3

1b4=k4
f ), the dimensionless inlet temperature (u1 ¼ kfT1=q1b), the aspect

ratio (A ¼ ‘=b), and Reynolds number (Re). These six parameters in addition to the
pure forced convection parameters, heat flux ratio (rH ¼ q2=q1) and Prandtl number

Figure 3.
Comparison of walls

temperature distribution
between the present

results of fully developed
case and those of Liu and

Thorsen (1970)

Table II.
Comparison between

present results and those
of Heaton et al. (1964)

for the local Nusselt
number between vertical

parallel plates

Z Nu (Heaton et al. (1964)) Nu (present work) Deviation %

0.0028 9.25 8.41 �9.08
0.0140 4.81 4.55 �5.41
0.0280 3.84 3.74 �2.60
0.1400 2.78 2.78 0
0.2800 2.70 2.70 0
1 2.70 2.70 0
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(Pr) are controlling the present problem. With these eight dimensionless parameters, a
complete parametric study of the effects of radiation is not feasible. Therefore, the
present investigation will be limited to the cases of equal emissivities (11 ¼ 12 ¼ 1),
one wall is heated and the other is adiabatic (i.e. heat flux ratio rH ¼ 0), and a fluid of
Pr ¼ 0.707 (air). Thus, the controlling parameters are reduced to only five parameters
(1; Nrad; A; u1; and Re).

The main emphasis will be placed on the results that show the effect of the above
five controlling parameters on wall temperatures, fluid temperature distribution, and
Nusselt number. In addition, threshold values of Nrad (the radiation number) at which
radiation effect can be neglected will be determined. Finally, radiation numbers at
which the combined radiation-convection can produces symmetric heating (even
though rH ¼ 0) will be determined.

The ranges chosen for the controlling parameters Re, A, 1; and u1 are:

500 � Re � 2;000

20 � A � 1;000

0 � 1 � 1

0:1 � u1 � 10

The range investigated for the radiation number (Nrad ¼ sq3
1b4=k4), and the

corresponding ranges for plate spacing (b), and heat input ðq1Þ are shown in Table III
for three selected values of the dimensionless inlet temperature.

The above ranges of dimensionless inlet temperature and radiation number are
chosen to have a wide range of heat input for both the close spacing and the large
spacing.

To understand the physics of the problem, the wall temperatures and the fluid
temperature profiles of are presented first. Due to space limitations, only a sample of
the results will be presented here. Unless otherwise stated, the presented sample of
results is for the following controlling parameters values: dimensionless inlet
temperature ðu1Þ ¼ 3, radiation number ðNradÞ ¼ 0.03, aspect ratio ðAÞ ¼ 500,
emissivityð1Þ ¼ 0.9, and Reynolds number (Re) ¼ 1,000.

Effect of surface radiation on wall temperatures and fluid temperature profiles
Figures 4 (a), (b), and (c) show the variation of the wall temperatures and the mixed-
mean temperature with the distance from entrance for both the combined radiation-
forced convection case and the pure forced-convection case for three selected values of
the aspect ratio namely, 50, 100, and 500 respectively. In these figures the wall/fluid
temperature is normalized using the dimensionless inlet temperature. The figures
show that the surface radiation reduces the temperature of the heated wall and
increases the temperature of the unheated wall, when compared with the pure-forced

Table III.
Range investigated for
the radiation number
(Nrad ¼ �q3

1b4=k4)

u1 Nrad bðmÞ q1ðw=m2Þ

0.1 60-3*104 0.001-0.5 150.0-8*104

1.0 0.06-30 0.001-0.5 15.0-8,000
10.0 0.00006-0.03 0.001-0.5 1.5-800
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Figure 4.
Walls and mixing-cup

temperatures for the
combined radiation-

convection and the pure
convection solutions
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convection case. The dip in the wall temperature near the exit is due to the relatively
large value of radiation transfer directly to the exit.

The above figures indicate that the combined radiation-convection two wall
temperatures can be not at all close to the pure-convection results; they rather lie
midway between them. In contrast, the mixing-cup (mixed-mean) temperature, for the
parameters chosen (u1 ¼ 3, Nrad ¼ 0:03, A ¼ 500, 1 ¼ 0:9, rH ¼ 0, Re ¼ 1,000,
Pr ¼ 0.707), are identical in both cases for all the three chosen values of the aspect ratio
(A ¼ 50, 100, and 500). This is because the heat input to the fluid, as per the imposed
boundary conditions, is almost the same in both cases for such a low value of Nrad.

Figure 5 shows typical normalized fluid temperature (T=T1, i.e. u=u1) profiles at
different longitudinal distances from the entrance, for both the combined radiation-
convection and the pure-convection solutions. It is clear from this figure that surface
radiation has a noticeable effect on the fluid temperature; surface radiation decreases
the fluid temperature near the heated wall and increases it near the unheated wall. In
addition, the radiation effect is as if it transfers some of the convective heat flux from
the heated wall to the unheated wall and hence reduces the heated-wall temperature
gradient while it increases such a gradient on the externally adiabatic wall to make it
internally active (i.e. it transfers heat by convection to the moving fluid even though it
is externally adiabatic).

Figure 6 (a), (b), and (c) show the effect of radiative heat transfer on local fluid
temperature (uf ¼ ðT� TmÞ=ðTw1 � TmÞ) for aspect ratios (A) 50, 100, and 500,
respectively. For a short channel (A ¼ 50), the portion near the unheated wall (Y > 0.8) can
become thermally fully developed. In contrast, for long channel (A ¼ 500), only the portion
near the heated wall (Y � 0.1) can be thermally fully developed. This means that the
thermally fully developed solution cannot be obtained with radiation present (except at a
value of the radiation number that can produce symmetric heating as will be shown later).

Effect of surface radiation on local Nusselt number
Figure 7 shows the variation of the local Nusselt number on the uniformly heated wall
with the dimensionless distance Z/L for the selected aspect ratios (A) 50, 100, and 500.
It is clear from this figure that as the aspect ratio increases the local Nusselt number on
the heated side attains its asymptotic value at smaller distance from the entrance

Figure 5.
Cross-channel
temperature profiles of air
for both combined and
pure convection solutions
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Figure 6.
Cross-channel

temperature profiles of air
for both combined and

pure convection solutions



HFF
20,2

230

(smaller values of Z/L). This is because, as was shown before, the fluid in the portion of
the channel near the heated wall becomes thermally fully developed in such long
channel. On the other hand, the externally adiabatic wall is also heating the fluid (it is
internally active) as a result of being heated by the heat radiation that it receives from
the heated wall. The local Nusselt number on this unheated wall attains its asymptotic
value for short channel (low values of A) as shown in Figure 8; this is because the fluid
near this wall becomes thermally fully developed. For long channels, the local Nusselt
number on the unheated wall continued to decrease and cannot attain an asymptotic
value as shown in the figure.

Effect of radiation number
Figure 9 shows the effect of radiation number (Nrad ¼ sq3

1b4=k4
f ) on the fluid

temperature profiles (uf ¼ ðT� TmÞ=ðTw1 � Tm)) at Z ¼ 0.5. As the radiation number
increases the fluid temperature profile becomes closer to symmetry. Increasing the
radiation number increases the amount of heat radiated that crosses the gap to the
unheated plate until both the externally adiabatic and the heated surface temperatures
become the same as clarified in Figure 10.

Figure 7.
Local Nusselt number on
the heated side

Figure 8.
Local Nusselt number on
the unheated side
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Figures 11 and 12 show the effect of the radiation number on the local Nusselt
number on the heated wall and on the unheated wall, respectively. The local Nusselt
number on the heated wall increases as the radiation number increases. For the chosen
radiation numbers, it reaches an asymptotic value when the flow reaches thermal full
development as shown in the figure.

At considerably low radiation number, the local Nusselt number on the unheated
wall can be negative allover the channel length. This is because the unheated wall is
not supplying heat to the fluid, on the contrary it absorbs heat, and the term
(Tw2 � Tm), in the definition of the local Nusselt number, is negative. At entrance
(Z/L ¼ 0), the local Nusselt number on the unheated wall is infinite (�1 for
considerably low radiation numbers orþ1 for large values of radiation number). This
is because the boundary layer thickness is zero at this particular location and merely, in
the definition of the local Nusselt number, Tw2 � Tm ¼ 0. For a given radiation
number, the absolute value of the local Nusselt number on the unheated wall decreases
until it reaches its asymptotic value when the flow reaches thermal full development as
shown in Figure 12. At very high radiation number, the combined radiation-forced

Figure 9.
Cross-channel

temperature profiles of air
for different radiation

numbers

Figure 10.
Walls temperature for

different radiation
numbers



HFF
20,2

232

convection heat transfer can behave similar to a pure forced convection with symmetric
heating as shown in Figures 13 and 14. However, the wall temperatures and the
mixing-cup (mixed-mean) temperature of the combined solution in this case are lower
than those obtained by pure convection with symmetric heating, as shown in Figure 15.
The radiation number at which symmetric heating can occur will hereinafter be
referred to as the symmetric radiation number (Nr;symm).

The effect of the radiation number on the average Nusselt number on the heated
wall is shown in Figure 16. It is clear that the average Nusselt number first increases
rapidly with the radiation number then it increases gradually and attains an
asymptotic value at the symmetric radiation number. The values of the average
Nusselt number are always between two limiting values corresponding to two pure
convection solutions: one with one wall heated while the other wall is adiabatic (rH ¼ 0)
and the second of symmetric heating (rH ¼ 1).

Figure 11.
Local Nusselt number on
heated side for different
radiation numbers

Figure 12.
Local Nusselt number on
unheated side for different
radiation numbers
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Effect of heat flux ratio
Figure 17 shows the percentage of the average radiation heat transfer to the total heat
transfer from the heated wall as a function of heat flux ratio, rH. The figure shows that
the radiation transfer linearly decreases as the heat flux increases. The radiation effect
is less than 10 percent of the total heat transfer and can be neglected for heat flux ratio
ðrHÞ 	 0:8.

Effect of dimensionless channel length
Figure 18 shows the percentage of average radiation heat transfer to the total heat
transfer from the heated wall as a function of the dimensionless channel length, A/Re
for three selected values of rH (including the limiting values of rH ¼ 0 and 1). For

Figure 13.
Cross-channel

temperature profiles of air
for combined solution at

radiation number that
causes symmetric heating

and the pure convection
solution with real

symmetric heating

Figure 14.
Local Nusselt numbers

for combined solution at
radiation number that

causes symmetric heating
and the pure convection

solution with real
symmetric heating
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symmetric heating ðrH ¼ 1Þ, the wall temperature of the two surfaces are the same
which negates radiation heat transfer for all values of the dimensionless length; thus
the corresponding values of Qr1 percent are zero as shown in the figure. For zero heat
flux ratio ðrH ¼ 0Þ, the radiation transfer increases as the dimensionless length
increases. The case of rH ¼ 0:2 has noticeable radiation heat transfer and consequently
its results are qualitatively similar to that of rH ¼ 0.

Threshold values of radiation number
The threshold values of the radiation number below which radiation can be neglected
for a given dimensionless inlet temperature ðu1Þ are of practical importance. These
values are given for three selected values of u1 ¼ 0:1, 1, and 10 in Tables IV-VI,
respectively. The threshold values of the radiation number have been arbitrarily
defined in the present work as the values at which the percentage of the average
radiation transfer to the total heat transfer from the heated wall is 10 percent. The
fraction of the radiation heat transfer to the total is the difference between the local heat
input per unit area Q ¼ 1 (constant) and the local convective heat flux (assuming the

Figure 15.
Wall temperatures and
mixing-cup temperatures
for combined solution at
symmetric radiation
number and the pure
convection solution with
real symmetric heating



Combined forced
convection and

surface radiation

235

Figure 16.
Average Nusselt number

on heated wall as a
function of radiation

number

Figure 17.
Percentage of average

radiation heat transfer on
heated wall as a function

of heat flux ratio

Figure 18.
Percentage of average

radiation heat transfer on
heated wall as a function

of dimensionless length
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axial wall heat conduction is negligible), i.e.,

Qr ¼ 1:0þ @u

@Y

����
Y¼0

� �

The average radiation transfer can be obtained as follows:

Qr ¼

ÐL
0

QrdZ

L

These tables show that the radiation effect increases as the dimensionless inlet

temperature decreases. It is also found that for inlet temperature ðu1Þ � 0:025 the

Table IV.
Threshold values of
radiation number

A ¼ 20 A ¼ 200 A ¼ 1,000
1 Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2000 Re ¼ 500 1,000 2,000

0.05 240 480 880 – – – – – –
0.25 – 90 190 – – – – – –
0.50 – – 80 – – – – – –
0.75 – – – – – – – – –
0.95 – – – – – – – – –

Note: u1 ¼ 0:1

Table V.
Threshold values of
radiation number

1
A ¼ 20 A ¼ 200 A ¼ 1,000

Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000

0.05 2.800 3.600 5.000 0.910 1.300 1.900 0.120 0.370 0.690
0.25 0.500 0.750 0.990 0.150 0.250 0.350 – 0.060 0.130
0.50 0.230 0.340 0.460 0.070 0.100 0.150 – – 0.060
0.75 0.130 0.180 0.270 – 0.060 0.080 – – –
0.95 0.084 0.130 0.180 – – – – – –

Notes: means there is no threshold value, i.e. radiation can not be neglected; radiation is higher
than 10 percent of the total heat transfer; �1 ¼ 1:0

Table VI.
Threshold values of
radiation number

1
A ¼ 20 A ¼ 200 A ¼ 1,000

Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000

0.05 0.00350 0.00450 0.00550 0.002100 0.00250 0.00300 0.00150 0.00180 0.00220
0.25 0.00074 0.00094 0.00120 0.000400 0.00045 0.00055 0.00027 0.00035 0.00041
0.50 0.00034 0.00043 0.00055 0.000170 0.00020 0.00024 0.00012 0.00015 0.00018
0.75 0.00019 0.00024 0.00033 0.000100 0.00012 0.00014 0.00007 0.00008 0.00010
0.95 0.00012 0.00017 0.00022 0.000065 0.00008 0.00009 – – 0.00006

Note: u1 ¼ 10:0
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radiation effect can not be neglected for all values of controlling parameters under
consideration in the present investigation.

Values of radiation number to achieve symmetric heating
The values of the radiation number at which symmetric heating can occur for a given
dimensionless inlet temperature are shown in Tables VII-IX for the three selected
values of A and for u1 ¼ 0:1, 1.0 and10.0, respectively. These values are referred to as
the symmetric radiation numbers and they have been arbitrarily defined in the present
work as the values at which the average Nusselt number of the combined solution
approaches within 5 percent the average Nusselt number of the pure convection with
symmetric heating ðrH ¼ 1Þ. At these values of radiation number, the maximum value
of the average Nusselt number on the uniformly heated wall and the maximum
reduction in the maximum wall temperature are achieved.

Table VII.
Symmetric values of

radiation number

1
A ¼ 20 A ¼ 200 A ¼ 1,000

Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000

0.05 NSO NSO NSO 1,300 4,600 8,100 AS 190 500
0.25 7,000 15,000 28,000 380 880 1,800 AS AS 100
0.50 4,000 4,600 6,000 180 400 900 AS AS 60
0.75 2,200 3,170 5,000 70 250 570 AS AS AS
0.95 1,880 2,570 4,000 AS 100 340 AS AS AS

Notes: *NSO: no symmetric heating occurs; **AS: always symmetric; u1 ¼ 0:1

Table VIII.
Symmetric values of

radiation number

1
A ¼ 20 A ¼ 200 A ¼ 1,000

Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000

0.05 NSO* NSO NSO NSO NSO NSO 5.00 15.00 30.00
0.25 NSO NSO NSO 10 20 40 0.30 1.50 4.00
0.50 NSO NSO NSO 3.1 6.7 12.5 0.10 0.59 1.50
0.75 NSO NSO NSO 1.7 3.4 6.1 AS** 0.33 0.80
0.95 NSO NSO NSO 1.0 2.2 3.8 AS 0.21 0.57

Notes: *NSO: no symmetric heating occurs; **AS: always symmetric; u1 ¼ 1:0

Table IX.
Symmetric values of

radiation number

1
A ¼ 20 A ¼ 200 A ¼ 1,000

Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000 Re ¼ 500 1,000 2,000

0.05 NSO NSO NSO NSO NSO NSO NSO NSO NSO
0.25 NSO NSO NSO NSO NSO NSO 0.00220 0.00820 0.0140
0.50 NSO NSO NSO NSO NSO NSO 0.00085 0.00250 0.00410
0.75 NSO NSO NSO NSO NSO NSO 0.00047 0.00130 0.0030
0.95 NSO NSO NSO 0.00250 0.00440 0.00860 0.00030 0.00090 0.0020

Notes: *NSO: no symmetric heating occurs; **AS: always symmetric; u1 ¼ 10:0
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Conclusion
Surface radiation can drastically affect the forced convection heat-transfer parameters.
Even in the extreme case of asymmetric heating with rH ¼ 0, surface radiation can
engender symmetric fluid heating. Values of the radiation numbers at which
symmetric fluid heating can be achieved have been obtained for selected values of the
surface emissivity ð1Þ, the aspect ratio (A), the inlet fluid temperature ðu1Þ, and the
Reynolds number. Similarly, the radiation numbers at which surface radiation can
practically be neglected in the forced convection flow have been obtained.
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